FastMCP includes native OpenTelemetry instrumentation for observability. Traces are automatically generated for tool, prompt, resource, and resource template operations, providing visibility into server behavior, request handling, and provider delegation chains.
How It Works
FastMCP uses the OpenTelemetry API for instrumentation. This means:
Zero configuration required - Instrumentation is always active
No overhead when unused - Without an SDK, all operations are no-ops
Bring your own SDK - You control collection, export, and sampling
Works with any OTEL backend - Jaeger, Zipkin, Datadog, New Relic, etc.
Enabling Telemetry
The easiest way to export traces is using opentelemetry-instrument, which configures the SDK automatically:
pip install opentelemetry-distro opentelemetry-exporter-otlp
opentelemetry-bootstrap -a install
Then run your server with tracing enabled:
opentelemetry-instrument \
--service_name my-fastmcp-server \
--exporter_otlp_endpoint http://localhost:4317 \
fastmcp run server.py
Or configure via environment variables:
export OTEL_SERVICE_NAME = my-fastmcp-server
export OTEL_EXPORTER_OTLP_ENDPOINT = http :// localhost : 4317
opentelemetry-instrument fastmcp run server.py
This works with any OTLP-compatible backend (Jaeger, Zipkin, Grafana Tempo, Datadog, etc.) and requires no changes to your FastMCP code.
OpenTelemetry Python Documentation Learn more about the OpenTelemetry Python SDK, auto-instrumentation, and available exporters.
Tracing
FastMCP creates spans for all MCP operations, providing end-to-end visibility into request handling.
Server Spans
The server creates spans for each operation using MCP semantic conventions :
Span Name Description tools/call {name}Tool execution (e.g., tools/call get_weather) resources/read {uri}Resource read (e.g., resources/read config://database) prompts/get {name}Prompt render (e.g., prompts/get greeting)
For mounted servers, an additional delegate {name} span shows the delegation to the child server.
Client Spans
The FastMCP client creates spans for outgoing requests with the same naming pattern (tools/call {name}, resources/read {uri}, prompts/get {name}).
Span Hierarchy
Spans form a hierarchy showing the request flow. For mounted servers:
tools/call weather_forecast (CLIENT)
└── tools/call weather_forecast (SERVER, provider=FastMCPProvider)
└── delegate get_weather (INTERNAL)
└── tools/call get_weather (SERVER, provider=LocalProvider)
For proxy providers connecting to remote servers:
tools/call remote_search (CLIENT)
└── tools/call remote_search (SERVER, provider=ProxyProvider)
└── [remote server spans via trace context propagation]
Programmatic Configuration
For more control, configure the SDK in your Python code before importing FastMCP:
from opentelemetry import trace
from opentelemetry . sdk . trace import TracerProvider
from opentelemetry . sdk . trace . export import BatchSpanProcessor
from opentelemetry . exporter . otlp . proto . grpc . trace_exporter import OTLPSpanExporter
# Configure the SDK with OTLP exporter
provider = TracerProvider ()
processor = BatchSpanProcessor ( OTLPSpanExporter ( endpoint = " http://localhost:4317 " ))
provider . add_span_processor ( processor )
trace . set_tracer_provider ( provider )
# Now import and use FastMCP - traces will be exported automatically
from fastmcp import FastMCP
mcp = FastMCP ( " my-server " )
@ mcp . tool ()
def greet ( name : str ) -> str :
return f "Hello, { name } !"
The SDK must be configured before importing FastMCP to ensure the tracer provider is set when FastMCP initializes.
Local Development
For quick local trace visualization, otel-desktop-viewer is a lightweight single-binary tool:
# macOS
brew install nico-barbas/brew/otel-desktop-viewer
# Or download from GitHub releases
Run it alongside your server:
# Terminal 1: Start the viewer (UI at http://localhost:8000, OTLP on :4317)
otel-desktop-viewer
# Terminal 2: Run your server with tracing
opentelemetry-instrument fastmcp run server.py
For more features, use Jaeger :
docker run -d --name jaeger \
-p 16686:16686 \
-p 4317:4317 \
jaegertracing/all-in-one:latest
Then view traces at http://localhost:16686
Custom Spans
You can add your own spans using the FastMCP tracer:
from fastmcp import FastMCP
from fastmcp . telemetry import get_tracer
mcp = FastMCP ( " custom-spans " )
@ mcp . tool ()
async def complex_operation ( input : str ) -> str :
tracer = get_tracer ()
with tracer . start_as_current_span ( " parse_input " ) as span :
span . set_attribute ( " input.length " , len ( input ))
parsed = parse ( input )
with tracer . start_as_current_span ( " process_data " ) as span :
span . set_attribute ( " data.count " , len ( parsed ))
result = process ( parsed )
return result
Error Handling
When errors occur, spans are automatically marked with error status and the exception is recorded:
@ mcp . tool ()
def risky_operation () -> str :
raise ValueError ( " Something went wrong " )
# The span will have:
# - status = ERROR
# - exception event with stack trace
Attributes Reference
RPC Semantic Conventions
Standard RPC semantic conventions :
Attribute Value rpc.system"mcp"rpc.serviceServer name rpc.methodMCP protocol method
MCP Semantic Conventions
FastMCP implements the OpenTelemetry MCP semantic conventions :
Attribute Description mcp.method.nameThe MCP method being called (tools/call, resources/read, prompts/get) mcp.session.idSession identifier for the MCP connection mcp.resource.uriThe resource URI (for resource operations)
Auth Attributes
Standard identity attributes :
Attribute Description enduser.idClient ID from access token (when authenticated) enduser.scopeSpace-separated OAuth scopes (when authenticated)
FastMCP Custom Attributes
All custom attributes use the fastmcp. prefix for features unique to FastMCP:
Attribute Description fastmcp.server.nameServer name fastmcp.component.typetool, resource, prompt, or resource_templatefastmcp.component.keyFull component identifier (e.g., tool:greet) fastmcp.provider.typeProvider class (LocalProvider, FastMCPProvider, ProxyProvider)
Provider-specific attributes for delegation context:
Attribute Description fastmcp.delegate.original_nameOriginal tool/prompt name before namespacing fastmcp.delegate.original_uriOriginal resource URI before namespacing fastmcp.proxy.backend_nameRemote server tool/prompt name fastmcp.proxy.backend_uriRemote server resource URI
Testing with Telemetry
For testing, use the in-memory exporter:
import pytest
from collections . abc import Generator
from opentelemetry import trace
from opentelemetry . sdk . trace import TracerProvider
from opentelemetry . sdk . trace . export import SimpleSpanProcessor
from opentelemetry . sdk . trace . export . in_memory_span_exporter import InMemorySpanExporter
from fastmcp import FastMCP
@ pytest . fixture
def trace_exporter () -> Generator [ InMemorySpanExporter , None , None ]:
exporter = InMemorySpanExporter ()
provider = TracerProvider ()
provider . add_span_processor ( SimpleSpanProcessor ( exporter ))
original_provider = trace . get_tracer_provider ()
trace . set_tracer_provider ( provider )
yield exporter
exporter . clear ()
trace . set_tracer_provider ( original_provider )
async def test_tool_creates_span ( trace_exporter : InMemorySpanExporter ) -> None :
mcp = FastMCP ( " test " )
@ mcp . tool ()
def hello () -> str :
return " world "
await mcp . call_tool ( " hello " , {})
spans = trace_exporter . get_finished_spans ()
assert any ( s . name == " tools/call hello " for s in spans )